PlGF Blockade Does Not Inhibit Angiogenesis during Primary Tumor Growth

نویسندگان

  • Carlos Bais
  • Xiumin Wu
  • Jenny Yao
  • Suya Yang
  • Yongping Crawford
  • Krista McCutcheon
  • Christine Tan
  • Ganesh Kolumam
  • Jean-Michel Vernes
  • Jeffrey Eastham-Anderson
  • Peter Haughney
  • Marcin Kowanetz
  • Thijs Hagenbeek
  • Ian Kasman
  • Hani Bou Reslan
  • Jed Ross
  • Nick Van Bruggen
  • Richard A.D. Carano
  • Yu-Ju Gloria Meng
  • Jo-Anne Hongo
  • Jean- Philippe Stephan
  • Masabumi Shibuya
  • Napoleone Ferrara
چکیده

It has been recently reported that treatment with an anti-placenta growth factor (PlGF) antibody inhibits metastasis and primary tumor growth. Here we show that, although anti-PlGF treatment inhibited wound healing, extravasation of B16F10 cells, and growth of a tumor engineered to overexpress the PlGF receptor (VEGFR-1), neutralization of PlGF using four novel blocking antibodies had no significant effect on tumor angiogenesis in 15 models. Also, genetic ablation of the tyrosine kinase domain of VEGFR-1 in the host did not result in growth inhibition of the anti-VEGF-A sensitive or resistant tumors tested. Furthermore, combination of anti-PlGF with anti-VEGF-A antibodies did not result in greater antitumor efficacy than anti-VEGF-A monotherapy. In conclusion, our data argue against an important role of PlGF during primary tumor growth in most models and suggest that clinical evaluation of anti-PlGF antibodies may be challenging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of a functional VEGFR-1 in tumor cells is a major determinant of anti-PlGF antibodies efficacy.

PlGF, one of the ligands for VEGFR-1, has been implicated in tumor angiogenesis. However, more recent studies indicate that genetic or pharmacological inhibition of PlGF signaling does not result in reduction of microvascular density in a variety of tumor models. Here we screened 12 human tumor cell lines and identified 3 that are growth inhibited by anti-PlGF antibodies in vivo. We found that ...

متن کامل

Placenta growth factor overexpression inhibits tumor growth, angiogenesis, and metastasis by depleting vascular endothelial growth factor homodimers in orthotopic mouse models.

The role of placenta growth factor (PlGF) in pathologic angiogenesis is controversial. The effects of PlGF on growth, angiogenesis, and metastasis from orthotopic tumors are not known. To this end, we stably transfected three human cancer cell lines (A549 lung, HCT116 colon, and U87-MG glioblastoma) with human plgf-2 full-length cDNA. Overexpression of PlGF did not affect tumor cell proliferati...

متن کامل

Modelling Tumor-induced Angiogenesis: Combination of Stochastic Sprout Spacing and Sprout Progression

Background: Angiogenesis initiated by cancerous cells is the process by which new blood vessels are formed to enhance oxygenation and growth of tumor. Objective: In this paper, we present a new multiscale mathematical model for the formation of a vascular network in tumor angiogenesis process. Methods: Our model couples an improved sprout spacing model as a stochastic mathematical model of spro...

متن کامل

A placental growth factor variant unable to recognize vascular endothelial growth factor (VEGF) receptor-1 inhibits VEGF-dependent tumor angiogenesis via heterodimerization.

Angiogenesis is one of the crucial events for cancer development and growth. Two members of the vascular endothelial growth factor (VEGF) family, VEGF-A and placental growth factor (PlGF), which are able to heterodimerize if coexpressed in the same cell, are both required for pathologic angiogenesis. We have generated a PlGF1 variant, named PlGF1-DE in which the residues Asp72 and Glu73 were su...

متن کامل

NFAT1 mediates placental growth factor-induced myelomonocytic cell recruitment via the induction of TNF-alpha.

Recruitment of bone marrow-derived myelomonocytic cells plays a fundamental role in tumor angiogenesis and metastasis. Placental growth factor (PlGF) is a potent cytokine that can attract myelomonocytic cells to the tumor. However, the underlying mechanism remains obscure. In this study, we demonstrate that tumor-derived PlGF activates NFAT1 via vascular endothelial growth factor receptor 1 in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 141  شماره 

صفحات  -

تاریخ انتشار 2010